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ABSTRACT

The aerodynamic loading for deformed wings with elevons in both

subsonic and supersonic flow is considered. The solution procedure falls

into the potential flow category with appropriate restrictions. For

subsonic flow, a lifting surface Kernel function formulation is used in

which the local pressure loading for both wing and elevon is determined

simultaneously in a semi-closed summation manner. Cases under study

included gaps between wing and elevon in addition to arbitrary wing-

elevon deformations. Results for all cases compared very well with

experimental data. Experimental data taken in a low speed wind tunnel is

also presented for a cropped delta wing and rectangular elevon in which

the wing-elevon gap was the primary test variable. For supersonic flow,

3-D supersonic theory forms the basis for the solution procedure.

Deformations are accounted for with the use of doublet paneling added to

the basic 3-D solution. Results agree very well with existing experi-

mental data. The gapped elevon and thick wing trailing edge problem is

also addressed with satisfactory results.
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I. INTRODUCTION

Subsonic Flow

It has been observed that failures associated with the control

surfaces have occurred on certain missile configurations. It is believed

that these failures have occurred because of adverse loading on the

control surface due to large deformations in the wing surfaces. A pre-

liminary study was completed which attempted to identify the aerodynam-

ic changes which occurred because of these deformations. The present

study addresses the problem in more detail including various wing-elevon-

gap planform configurations, subsonic and supersonic Mach numbers, moderate

wing and elevon deformations of an arbitrary nature, and blunt trailing

edges for the wing.

In recent years, major efforts have been made to model multi-element

airfoil configurations (wing-elevon combinations) and to predict resulting

loads and moments. Most of the research efforts concerning these multi-

element lifting surfaces have been two-dimensional analyses as typified

by the early work oi Glauert2 ,3 in 1924 and 1927 and more recently by the

4,5
work of Halsey. However, the case of the wing, air gap, control

surface combination has generally been neglected as pointed out by Ashley6

who also expressed the need for such an analysis.

Extension of analyses to include three-dimensional effects or finite

wings has generally employed vortex lattice formulations or some form of

7 8

constant pressure paneling such as that of Woodward and Lan. .The Lan

approach has received considerable attention of late since the leading

1I
!
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edge suction terms and Kutta condition at the trailing edge are properly

accounted for in the analysis. DeJarnette 9 extended the "strip" approach

of Lan to provide for a "continuous" loading in the spanwise direction.

Aside from the Lan-DeJarnette formulation, general vortex lattice

approaches suffer from traditional shortcomings such as large computer

storage and long run times even on today's high-speed computers. Formu-

lation of the problem using the Kernel function approach in its usual form

10,11
as typified by Cunningham has been generally neglected but offers the

potential for increased accuracy, lower computer run times and less
8 9

storage than does the vortex lattice approach. The Lan -DeJarnette

analysis requires comparable run times and storage and offers a viable

alternative to the solution of the problem at least for single element

airfoils. Extension to multi-element airfoils, as far as is known, has

not been completed.

For the most part, previous theoretical analyses have been restricted

to planar lifting surfaces with no camber or twist. Wing-elevon con-

figurations generally have been sealed-6ap cases. However, White and

Landahl12,13 have developed ;, procedure requiring the method of matched

asymptotic expansions which is used to determine the load distribution

when a gap exists between the wing and elevon in two-dimensional flow.

Both the vortex lattice and Kernel function approaches have enjoyed

certain successes but certainly the vortex lattice has been more exten-

sively used. There are certain problemts which, though amenable to vortex

lattice solutions, are more easily handled by the present lifting surface

techniques; namely, that of wing irregularities such as twist, camber,

and arbitrary deformations. Certainly camber and twist have been

! ...I
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addressed in previous efforts, but analyses of moderate "arbitrary"

deformations of a lifting surface have not been found in the literature.

The present work is concerned with the wing-elevon problem for

configurations with moderate wing deformations such as camber, twist,

and general deformations due to high wing loading or distortion of the

surfaces due to aerodynamic heating. Lifting surface theory is employed

with the solution following the procedure established by Purvis14 and

Burkhalter, et al. 1 5 The loading function over the multiple lifting

surface is defined, and the Kernel function is then integrated over the

surfaces. For this work, the gap distances are considered to be small

enough that vortex rollup is assumed negligible.

Comparison is made with experimental data on several general con-

figurations. For the gap case, data was obtained from low speed wind

tunnel tests with gap distance as a primary test variable. Data for

several elevon deflection angles and hinge line locations are shown for

each configuration at numerous angles of attack. Experimental data is

lacking for wing load deformations at subsonic speeds but comparisons

are made with uiings which have t:-d,...te camber anl twist.

Supersonic 1low

For supersonic flow there are several approaches which address the

problem of predicting loads cn a planar wing. These methods range from

two-dimensional shock ezpansi,,n theory to three-dimensional wing theory

to vortex lattice theory. Some approaches are useful for variably swept

wings while others are only applicable to wings with straignt leading

edges. The basic elements of the major supersonic flow theories will be

summarized in the following paragraphs.

I
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Shock-expansion theory is two-dimensionally restricted to attached

shocks but it is general and can be used for thick and thin 2-D bodies

alike. However, because the results are difficult to express in concise

aLialytical form, shock-expansion theory is mainly used for obtaining

numerical solutions for diamond shaped airfoils. If, however, one

assumes a thin wing in steady flow at a small angle of attack; i.e.,

small perturbations; then the approximate relations for weak shocks and

expansions may be used. This thin airfoil theory results in a simple

analytical expression for calculating the pressure coefficient.

Although these two-dimensional theories are valuable, they are not

sufficient to correctly model three-dimensional flow. Two of the first

three-dimensional theories were point source theory and line source

theory. These theories were adapted to thin supersonic airfoils with

straight leading edges and various types of symmetrical crossections.

In each theory the velocity potential for the wing is obtained by

analytically integrating over the forecone from the point in question.

Either subsonic or supersonic leading edges may be handled in this manner

as well as delta wings with supersonic leading and trailing edges. These

theories, however, do not allow for the interaction between the upper

and lower surfaces of the wing which would result from subsonic leading

edges as well as from subsonic wing tips.

Thin wings with straight subsonic leading edges may be handled by

conical flow theory. As the flow properties are constant along rays

emanating from the vertex of the wing the flow is two-dimensional. The

Tschaplygin transformation is used to transform the small perturbation

equation in polar coordinates into the two-dimensional Laplace equation.

f
!I
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Complex variable techniques developed for incompressible flow are then

j used to obtain an analytical solution for the pressure coefficients.

This technique has also been extended to wings with straignt supersonic

leading edges and also to wings with straight subsonic and supersonic

leading edges combined.

All of these techniques are basically inadequate in predicting

loads for a deformed wing; a deformed wing in this case meaning moderate

arbitrary deformations which include camber and twist. Most are amenable

to general planform shapes but are usually restricted to straight leading

and trailing edges and do not include fuselage effects. A more recent

attempt to include curved leading edges was completed by Carlson1 6 in

which a vortex lattice scheme was used to model the wing planform. Al-

though resulting computations were highly oscillatory, a "smoothing"

routine introduced by Carlson produced acceptable results for thin planar
17

wings. Another recent formulation of the problem utilizing supersonic

line sources has also produced good results on curved planform shapes

and does not require any post data manipulation.

The solution technique used in the present research is fundamentally

based on three-dimensional supersonic flow theory as outlined in Refs. 18,

15 and 19, but is modified to account for wing deformations. Potential

flow is still assumed so that solutions to the potential equations may

be added. .The deformed wing is "overlaid" with a doublet paneling sheet

whose strength everywhere is determined through matrix inversion tech-

niques and the doublet solution is then added to the basic three-dimensional

supersonic solution. This is accomplished by subdividing the wing planform

into very small panels over which the pressure is assumed constaLit.

! ~. -.-- -
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Integration is completed over each subpanel in closed form and results

may then be written in summation notation. The vorticity paneling

produces perturbation velocities which account for deformations in the wing

surface.

t
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II. SU3SONIC FLOW-THEORY

Fundamental Equations

The appropriate equations and solution procedure for the Kernel

function formulation used in the subsonic analysis are outlined in this

section. The equations are well known (Refs. 20 and 21) and the solution

procedure is developed in detail in Ref. 14.

Compressibility is included in the potential equation which is

written as

XYZ (x ,y) [ (x-xO) 1 dyi *(x,y,z) = 0 0 (-o+z 1 + 0x ° dd °

4"rf J (Yy )2+Z2 I+2 y_2
S 0 (x-x )2+ (y-y )z+ 2zZ

0 0J

The downwash at an arbitrary point (x,y) in the z=O plane due to an

infinitesimal area (dx° dy ) of a lifting surface is

0 0

w(x,y,O) = L _J 2 1+ 0 dx dy (I)
.... (y-Y)2 (X-xo) 2+ 2(y_yo)

2 J

where E and q are dimensionless :hordwise and spanwise variables, respec-

tively. These variables are made non-dimensional by the definitions:

x-x (y)
LE , (2)

c(y) b/2

The functional form of the pressure loading coefficient is assumed as

N 1 Mn
A C(n) B sin(2m+l)e (3)

n=0 m=0

7I
!
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where rl = cos 0 and N and M represent an arbitrary number of chordwise

and spanwise control points, respectively. It is readily seen that this

form produces the required leading edge square root singularity, satisfies

the Kutta condition at the trailing edge, and has slender wing behavior

at the wing tips. A discussion of the logic behind this assumed form of

the pressure loading is presented in Reference 14.

Over a sufficiently small subpanel of the wing planform, AC isP

essentially constant and may be taken outside the integral of eq. (1).

The resultin , expression may be evaluated in closed form to give

Aw(x,y) = P [K(x 2 ,Y 2 ) -K(x2,.y) -K(x ,y2 ) +K(x1 ,Y1 )] (4)
811

where, as an example, K(xly I) is evaluated in the form

K(x y ) (x-x1) + -x1 )2 + 32(y-yl)2

(Y-Yl)

)2y ay1 ) )
+ log [ (y-y I ) + /(x--xl)2 + 2(y-y)2 ] (5)

e -l1 1

The other K's of eq. (4) are evaluated by making the appropriate sub-

stitution of the subscripted variables in eq. (5). Also in eq. (4),

AC (E,rI) is evaluated at the centroid of the subpanel. The wing andP

subpanel are illustrated in Fig. i.

For small angles-of-attack, the boundary condition imposed is the

requirement of no flow through the wing; i.e.,

w(x,y) + sin a(x,y) = 0 (6)

L[



x

-0'~ dy0

X~vy dx

CT

8=7T/2 8=0

j Figure 1. Wing and Subpaiiel Coordinates.
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The total downwash at any control point due to the entire wing is found

by summing the effect of eac. subpanel of the surfacc and Eq. (6) becomes

XYAw(x ,y) + sin a(x.,y.) 0 (7)
S

where (x.,y.) are the control points, and are located according to a
1j

cosine distribution 9

c(y.)
x= XLE (y) + - _ (I - cos -$1) , i = 1,2,.. .N

LE1 2 N+1

"(1 - Cos "i) I = 1,2,.. .M (8)
yj 2 M+l

The set of simultaneous, linear equations for the NxM unknown loading

coefficients, B 's, defined by substituting eq. (3) into eq. (4) andnm

the result into eq. (7), may now be solved, andthe loading at any point

on the wing is defined by Eq. (3)

Loading Function for Wing-Gap-Elevon Configuration

The above analysis is for a wing configuration only. When a control

surface (e]e-.on) is added to the wing, the load distribution will of

course change. Vurther changes in this distribution occur when a gap is

introduced between the wing ani elevon. In the present work, it is assumed

that the elevon span is equal to the wing span, and the elevon hinge

line is perpendicular to the wing center!ine. With these stipulations, the

solution procedure for the basic wing is paralleled except for the loading

function.

First, for the sealed-gap case with a deflected elevon, a two-function

jformulation using eq. (3) to describe the pressure distribution is used.

The nondimensional chordwise variable, ', of eq. (3) is redefined and isI

i __ _ _ _ __ _
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considered separately for the wing and elevon. For the wing and elevon,

respectively, it becomes

X-XL (Y) X-X E(Y)

XXL = , - E (9)

W (Y) + cE(Y) ' F cF(Y)

This geometry is shown in Fig. 2. With these definitions, it is easily

verified that the leading edge singlarity is satisfied on both the wing

and elevon, a:d the Kutta condition is met at the elevon trailing edge.

These singularities agree with usual assumed loading function with con-

trol surfaces pointed out by Landahl in Reference 13. At the wing

trailing edge, the Kutta condition is not satisfied, nor is the usual

singularity obtained, but rather a finite value. This loading is used to

allow a closed form solution to the sectional lift integral. Error due

to this assumption is considered to be on the order of error due to the

assumption of an infinite loading, while the advantages of a closed form

solution are considerable. This (chordwise) distribution is shown sche-

matically in Fig. 3a.

Whmun a gap exists between the wing and elevon, the loading function

over the wing and elevon is defined in order to create the effect of two

wings. The leading edge singularity and Kutta condition must be satis-

fied on each surface. Equation (3) produces this distribution by

redefining the chord-wise variables illustrated in Fig. 2 as

LEw(Y )  
XXLEE(Y)

y ) c E (y) (10)

for the wing and elevon, respectively. This loading is shown in Fig. 3b.
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a) Sealed-Gap Case TE w/LEV

b) Gap Case TE w LE E

Figure 3. Chordwise Loading Functions.
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After the load distribution has been defined, eq. (7) with eqs. (3)

and (4) is used to produce a set of simultaneous, linear equations for

the unknown coefficients for both the wing and elevon. The typical

control point location and corresponding matrix for the unknown coef-

ficients are shown in Fig. 4. The control points are located using eq.

(8) separately for both the wing and elevon. The summation is performed

over the entire surface of the wing and elevon, and for the control

points on the elevon, the boundary condition becomes

w(xiY.) + sin[=(x.,y 0 (11)

It should be noted that the loadings for the -ing and elevon are

solved simultaneously, therefore, iteration of the interference between

the surfa s iminated. The pressure ai any point on the wing or

elevon is given by eq. (3), with the appropriate definition of CW and

E (eq. (9) or (10)), and the appropriate values of the B nm's (wing or

elevon).

Total Aerodynamic Forces and Moments

From the wing-elevon configuration, shown in Fig. 1, tve total lift

is given by

y=b/2 x=x TEJ AP dx dy (12)

y=-b/2 X=XLE

I
I
I
I
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Separating eq. (12) into the contributions for the wing and elevo 1 , and

using the definition for the pressure coefficient, the above equation

becomes

b/2 x TEWxTE

L = q f J AC dxW CPd d (13)

-b/2 x LEW X LEE

It is convenient to define the sectional lift coefficient as

TE

cc z f AC Pdx (14)

LE

Considering the sectional lift for the entire configuration to be

cc z(Y)0 cc k (y 0 ) + er ' (yo) (15)

the lift becomes

b /2

L = q ccZ(y0 ) dy (16)

j -b/2

where
x
TE W TE E

cc (y) AC dx + AC dx (7kL 1 P E (17

E

Combining eqs. (9) and (10), the dimensionless chordwise variable can

be defined by

x L E W ( Y ) X L E E ( )( 
8

WTE



I

where

i cW  ,gap case

C cW + cE, gap-sealed case

With these definitions, the sectional lift becomes

TEW 
1

cc (Y°) =f AC ( W q)c T d[w + f  ACP ( E'n)cE dEE (19)

0 0

Using eq. (3) for the pressure distribution, the integration of

eq. (19) may be performed as in Reference 15 to give

NW M
ccz(Yo n nmsin(2m+l)O

n=O m=0

NE M

+ I B sin(2q+1)0 (20)

p=O q=O pq

where B represents the pressure loading coefficients obtained fromnm

eq. (11) corresponding to the wing loading, and B represents thePq

coefficients of the elevon loading. Also, in eq. (20) for the wing

* 0= T + T 2 +1 i 1(2T - 1) (21)
4 TEW TEW 2 w

and

n 2 n - TE - TEW ) , nl,2,...NW (22)

and for the elevon

I0 
= T (23)

(23

and

Ip =  2p-) p-i p = 1,2,...N (24)p 2(p+l) IpI'E

Note that for the gap case, TE = 1, and eqs. (21) and (22) reduce to

eqs. (23) and (24) with n instead of p.

I 1
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Returning to eq. (16) and using the dimensionless spanwise variable,

n, of eq. (2), the total lift is

1

L = q f cck(9) dri 
(25)

-1

With the definition of the lift coefficient, and for a symmetric wing,

eq. (25) becomes

1

C f cc 0) d n (26)
L S 9(

0

Similar manipulation of the force equations leads to the total moment

about the root chord leading edge (of the wing) as

1
2 f c (7

CM =- c 2
c () dn (27)

CM Sc

0

with the sectional pitching moment coefficient given by

NW

c c (Ir) = XLE [ . i .in(2m+l)

+ C B~
W nm+ c Tri' l nmB ;n(2m+l)O

T n=O m= +

N -

+ xLE Ip B sin(2q+l',j

E p 0 q0 p

NE M
+ cE X !  I p + Bpq sin(2q+l)O (28)I p0 q0O

where the first two terms are seen to be the moment due to the 
wing, and

the last two are the moment due to the elevon.

I , I
II - H ii i - : ii lilli i ii i i 

- :1 ...- ~ ~ ii j* * .
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For the wing alone, the integration of the lift and moment equations

is performed analytically in closed form. However, because of the

discontinuity resulting from the addition of an elevon, eqs. (26) and

(27) must be integrated numerically when a gap exists or the elevon is

deflected.

In defining the lift and moment coefficients for the entire configur-

ation, the reference area, S, is the total surface area of the wing and

elevon combined, excluding the gap area. Similarly, the reference length

in the moment coefficient equation is the mean aerodynamic chord, c, of

the wing and elevon, without considering gap distance.

Elevon Hinge Moments

When an elevon is included in the configuration, elevon hinge moments

are important in determining control forces for the vehicle. For a

straight elevon leading edge with the hinge line located at the leading

edge, the total elevon hinge moment is

1

MH = qb f c2c (q)dn (29)

& -1

where the sectional hinge moment coefficient is defined as

2 (q) = c dE (30)

"'c 0

Writing eq. (29) in terms of the moment coefficient and for a symmetric

Iwing, it becomes
1

CH 2 f c (T) dn (31)

S E E  mH

EE 0

I
I
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Considering both the wing and elevon contributions of eq. (27) separately,

j it is noted that eq. (30) is the elevon moment about the elevon leading

edge, the solution of which is given by the last term of eq. (28), or

N
EM

C2 C cE I p+ B sin(2q+l)0 (32)p=O q=O Pq

Substituting eq. (32) into eq. (31), the integration may be evaluated in

closed form (Reference 14) to obtain

2c N c -c N M2R NE RE-T E NE M

CH = E B I + E B I G (33)SHE- Bp1 Ip+l - Y Y
S p0 SEc E  p=0 q=O pq p+l q

where

T/2

G = f sin 20 sin(2q+l)0 dO (34)

0

For the elevon hinge moments, the reference area, SE , is the total

area of the elevon. Also, the reference length, cE is the mean aero-

dynamic chord of the elevon.

Thus far, the analysi, has bein limite-d to a hinge line at the elevon

leading edge. If the elevon lift ir also .nown, the lift Liid moment

produce a couple at the elevon leading edge. 1he moment about any chord-

wise station-may be found by summi:ig moments at that point. This gives

MHL NLE I LE XHt (35)

I

II
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where XHL is the chordwise location of the hinge line measured from the

elevon leading edge. Dividing by q SECE gives the equation in coefficient

form

x

CH CH + CLEe :F1, (36)

where CH is given by Eqs. (33) and (34).

The total lift for the elevon is

i

C _ cc (f) d, (37)

0

with the sectional lift of the elevon given by

1

cc (r)= c fAG (FEl)d E (38)ceEn E CPE E

0

It is readily seen that this is the second integral in eq. (19) and

the solution is given by the last term of eq. (20); thus

E M
cc (q) = Y I B sin(2q+l)0 (39)!1 , E p=O q=O p p

where I is given by eqs. (23) and (24).

For the elevon, the lift may be obtained in closed form. Substi-

tuting eq. (39) into eq. (37), and integrating gives

NE

CL I B 1 (40)L 2S E pO p

where, in the loading coefficients B pq only the q=0 term appears.

Thus, using eqs. (40) and (33) in eq. (36), the elevon hinge moment

about the hinge line is obtained in closed form. The only requirement

L
" IIII ,, ,, , .. . ... , - _ _ -,9 . . .
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for the analysis is that the hinge line be perpendicular to the wing

root chord.

Non-Planar Wings

Lifting surfaces which do not lie entirely in the x-y plane present

a different view to the flow field than the planar wing previously con-

sidered. To analyze non-planar wings, it is necessary to consider the

angle that each control point and each grid element makes with the x-y

plane. Non-planar effects of primary interest include wing twist, cam-

bered airfoils, and arbitrary chordwise and spanwise deformations.

For the case of w. ig twist, at any given spanwise location on the

wing, the chord line lies in a plane that differs from the initial x-y

plane by the twist angle, a., at that station. This angle may be in-

cluded in the boundary condition such that eq. (6) becomes:

w(xiY.) + sin [t(xi,Y) + TW (xiyj)] = 0 (41)

The boundary condition for the elevon, eq. (11), may be rewritten in a

similar manner.

For cambered or arbitrarily deformed airfoils, the chord line may

be replaced by the mean ca ,f er line. The downwash produced by each grid

element is proportional to the angle which that element makes with the

x-axis, or

Aw(x.,y.) Aw(x.,y.)cos(Y. (42)

where ti is the angle relative to the x-axis and is given by

ic, =tan (dzj (43)
dx
X.
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This is the veh city comp~aent in the z-Oirection; however, each control

point also has a z.-Loordinate. The boundary condition is for no flow

through the wing, or that the normal component of velocity to the wing

be zero. The angle that th, control point makes with the x-axis is

given by

= tan-l(d-z. (44)

C

Thus the component of velocity normal to the wing is

Aw(x.,y.) = Aw(x.,y.)cosu (45)
i J 1 i c

It should be noted that the boundary condition of the deformed wing is

satisfied on the x-axis, although the coordinate of the mean line lies

off the axis; however, this is equivalent to the planar wing approxi-

mation essential to thin airfoil theory. The actual normalwash is found

by combining equations (42) and (45)

Aw(xiyj) = Aw(xiyj)cos( - c' ) (4W)

By defining a function z(x) many variations and amplitudes f camber

and wing deformation in the chordwise direction may be obtained. Com-

binations of twist and camber or deformation may also be analyzed. How-

j ever, the condition of no flow separation still applies at all points.

Interference-Effects

j In the present analysis, interference effects, such as fuselagc per-

turbations and leading edge suction, are also included. An infinite

line doublet is used to simulate fuselage interference effects on the

3 induced velocity over the wing. The potential equation for the line

I

I
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doublet may be differentiated to determine the velocity component normal

to the plane of the wing. To calculate the lift and moment of a fuselage

in the presence of a wing, an image wing inside the fuselage is employed.

The sectional characteristics of the actual wing are integrated over the

image wing span to determine the lift and moment. Both of these principles

are well known and the theoretical development can be found in Reference

22.

Leading edge suction, which makes a significant contribution to the

lift of highly swept wings at large angles of attack, has also been

incorporated into the preseat theory. Purvis (Ref. 23) has shown that,

for an assumed pressure distribution in the form of eq. (3), and for an

elliptic spanwise lift distribution, a general, closed form solution for

the leading edge suction is

C 
2

CL = (CL sina - A cos.) cosA (47)
LVLE Lp -TR cosA

where CL  represents the potential flow lift coefficient, which is given
p

by eq. (26). Also, from Reference 23, the moment may be written as

2.212072 C C b/2

C sin,__- ----P cos:i x [v 77 -+ sin - (q)]dv
MVLE c b cos. s AR f LB

0 (48)
Using the definition of 7 in eq. (2) gives

1.10603C C I

CVL -P sinij - A cosl IXL[rI'i2 + sin-()]d (49)
MVLE c cosx rAR f LE

0Io
For a constant leading edge sweep angle, this integral may be evaluated

in closed form. The coordinate of the leading edge is given by

x LE ri cosA!L

|
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therefore, eq. (A ) becomes

.106036C C(tanA) si L - f T ,- -( , d
- LP ( )[sinAt- -- cosCA] [n2/ + r sin-(n)Idy

-'IL cosA - ,AR

o io)

Integration produces

C
0.65151 L (tan')

C 0.65151 [C sint - Cosa]( A-- (51)

'%LE - L ~ TAR cosA

Since the current gap analysis assumes small gaps such that there is

no vortex rollup, interference effects will be confined to the fuselage

and leading edge suction. These correction terms are necessary to allow

a comparison between theory and experiment in many instances; therefore,

by including them, a more versatile analysis is obtained.

Order of Polynomials

Before proceeding, comments on the effect of polynomial order on

the solution is in order. The unknown constants, B in eq. (3) are
nm

really coefficients for the various terms in the polynomial describing the

pressure loa: on t!o t:in-. It has been suggested that if th. polynomial

order is inc-kea-ed to a large number of terms (i.e., , 50) that the sec-

tional coefficients such as cc will tend to "oscillate" in the spanwisc

direction. For the formulation used in the present analysis, no oscil-

lations are observable at least up to 50 terms in the equation. However,

oscillations do indeed occur if terms on the order of 80 or more are

used in the pressure loading. It does not appear that this is due to

"numerical" instability as would be the case if numerical integration

were used, but rather due to overkill. That is, the pressure loading

function is rather general and for most wings only a few terais (' 20) are

1

I
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required for a solution If more terms are used, it is analogous to

I fitting a 50th degree polynomial to a linear curve; oscillations are the

inevitable results.
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III. EXPERIMENTAL MODEL AND TESTS - SUBSONIC

Model

To verify the gap effects and subsequent elevon loading, an exper-

imental model shown in Fig. 5 was fabricated and tested in a low speed
24

wind tunnel. The baseline configuration consisted of a thin, low-

aspect ratio, cropped delta wing with rectangular elevons. These

surfaces were symmetrical about both the chord line and the fuselage

centerline. The fuselage was included to facilitate mounting of the

hinge moment balance mechanism. An ogive nosecone and tailcone were

also included. The fuselage and wing tips were designed to allow for a

two-inch translation in the elevon mounting position, which could be used

to vary the gap distance and/or the elevon hinge line location. The

model was floor-mounted to an external six-component pyramidal balance.

Test Procedures

The model was tested at a dynamic pressure of 3.5 inches of water

corresponding to a speed of approximately 126 feet per second and a

Reynolds number of 0.76 million per foot.

Data was obtained for an angle of attack range from -19 to +5

degrees in 2-de~ree increments. The negative range was used to minimize

strut interference effects on the elevons. Several elevon deflection

angles (00 to 200), gap distances (0 to 75% c E) and hinge line locations

(0 to 50% cE ) were tested.

27
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IV. RESULTS - SUBSONIC FLOW

Results for a wing configuration are compared to other well known

theories in Figs. 6 and 7. Agreemenc is good for all cases considered.

In obtaining results using the present theory, the wing subpanel mesh of

constant loading was 45 by 45 (cho,:dwise by spanwise), and the control

point grid was 4 by 4. The total CPU time required was 45 seconds on an

IBM 3031 compared to 1 minute for the method of Lan on the Honeywell

635.8 Storage requirements for the present method are negligible on a

large machine. This mesh size may be rediced such that total CPU time

is reduced to 20 seconds, with a change in accuracy of aproximately 5

percent.

A comparison of theory and experiment for the "base" configuration of

the wing-fuselage model is presented in Fig. 8. Both linear theory and

leading edge suction are included. The importance of the nonlinearity

introduced by leading edge suction in the high angle of attack region is

* easily realized trom this figure.

The theoretical pressure distribution for a deflected elevon is com-

pared with experimental data (from Ref. 25) in Fig. 9. From this figure,

it is seen that the assumed functional form for the chordwise pressuke

distribution for the sealed-gap case represents an adequate model of the

actual flow. Total lift and hinge moments are presented in Fig. 10

where agreement is good, particularly in the low angle of attack regime.

The analysis developed for the general case of deformed wings,

elevons, gap, and fuselage is used to predict the lift, pitching moment,

30
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-- Lan's theory (Ref. 8)

6.0 -Present theory

4.0
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P

rad -.

2.0 -

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

0.8
ccj

cc L

0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Comparison of Two Theories for a
Swept and Tapered Wing of Aspect

Ratio 2.828.
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8.0

-Present Theory

6.0 
DeJarnette (Ref. 9)

AC 4.0

rad

2.0-

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.2

0.8

C L 0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Comparison of Two Theories for a Rectangular

Wing of Aspect Ratio 2.
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0.2 --- Linear theory

_________Leadii,- edge suction

0.0 - 0 Experiment (Ref. 24)

-0.2 2

CL -04

-0.6 7.

1-1
-0.8

-10

-20 -16 -12 -8 -4 0 4
a (degrees)

0.6

0.2

0.0

-20 -16 -12 -8 -4 0 4
a (degrees)

Figure 8. Leading Edge Suction on a Highly Swept
Cropped Delta Wing with a Fuselage.
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I Figure 9. Chordwise Loading with a Deflected
Elevon at nl 0.5.
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0.8 - Theory

Experiment (Ref. 25) 6-0 o
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Figure 10. Lift and Hinge Moments for a

Wing-Elevon Configuration.
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and hinge moment slopes for the model tested in the low speed tunnel and

is shown as a function of gap distance in Fig. 11.

Certainly the most interesting trend with respect to the gap is that,

for all cases, hinge moments increase slightly as gap distance increases.

It is also noted from Fig. 11 that the coefficient slopes vary more

noticeably with changes in elevon deflection while the changes with angle

of attack are essentially negligible. Figure 12 illustrates the theoret-

ical spanwise pressure distribution over the wing and elevon for the

present cropped delta wing configuration. This figure confirms the

predicted increase in the loading over the elevon, and shows the slight

loading change with respect to angle of attack. This loading form is in
12

agreement with the two-dimensional results obtained by White, et al, as

well as the present experimental data. In Fig. 13, the hinge moments are

presented for several hinge line locations on the elevon. It is seen

here that there is a chordwise point, in this case between 15 and 20 per-

cent of the elevon mean aerodynamic chord, where the hinge moments are

independent of gap distance. It is noted that this point does not coin-

cide with CH 0, which gi"-s the elevon ar, dynamc center. This aspect

could be significont in the design of variible geometry wings where gap

distances are subject to change. Also the minimum value of the hinge

moment, which corresponds to minimum control forces, occurs for the sealed-

gap case.

The slopes of the pitching moments curves illustrated in Fig. 11 are

seen to be essentially constant in nature. Since the moment is referenced

to a fixed point on the wing, the increase in the moment arm with increas-

ing gap coupled with increased elevon loading might tend to suggest an

- J
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- -- Gap Theory

0.05 Sealed-Gap TheoryCL _ Experiment

L 0.04 0 0 0 0

0.03 
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Figure 11. Aerodynamic Characteristics for a
Gapped Configuration.
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Figure 12. Gap Effects on Chordwise Load
Distribution.
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Figure 13. Elevon Hinge Moments for SeveralHinge Line Locations.
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increase in uhe noment. However, from Fig. 12 it can be seen that the

change in pressire distribution mere than offsets these factors. Yet,

as the gap become-s large, the theoretical pressure distribution must

approach that of two separate wings, without interference. The moment

referred to a fixed point on the wing must become infinitely large as

the gap distance approaches infinity.

For large gaps, it was found experimentally (Figs. 14 and 15) that

there is a considerable increase in the total lift and moment for an

elevon deflection of -20'. The decrease in the forces becomes larger

with increasing gap distance. However, elevon hinge moments did not

reflect this trend, indicating that it is due more to the gap rather than

to flow separation over the elevon. In any case, it is apparently a

viscous phenomena and cannot be modeled properly using potential flow

techniques.

The experimental data for different hinge lines is presented in

Figs. 16 and 17. Theoretically, there are no changes in the total forces

and moments with a change in the hinge line. This result also appeared

in the experimental data despite the fact that, for a deflected elevon, the

elevon leading edge no longer lies in the plane of the wing. From the

data in Fig. 16, it is seen that the hinge moments at XHL/CE - .254, or

approximately the quarter chord of the elevon, are quite small and show

little variation with angle-of-attack or elevon deflection. This in-

dicates that this point is near the aerodynamic center for the elevon.

However, the slopes change with a change in gap distance, thus the aero-

dynamic center must also be gap dependent, as previously shown on Fig. 13.

I
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-Theory

Experiment

0.4- 0 6 = 00

0 =+5 °

0 .2 - 0 - 0 o 
6 

0
+ 5 0

0.0 -
0- 100

-0.4 -
L

-0.6

-0.

-1.0

-1.2

-1.4

-20 -16 -12 -8 -4 0 4
az (degrees)

Figure 14. Characteristics of a Wing-Fuselage-Elevon
Model for XHL/ E = 0.016 and E/-c = 0.004.
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Results for arbitrarily deformed airfoils are difficult to find in

the literature; therefore, perhaps the best basis for comparison is two-

dimensional thin airfoil theory. Table 1 illustrates theoretical results

for the two arbitrary ne-an lines shown. The present theory, extended

to two-dimensional results and thin airfoil theory show good agreement.

For cambered airfoils, experimental data may be obtained from Ref. 26.

Results are presented for the NACA 747A315 laminar flow airfoil in Fig. 18.

The current theory predicts experimental data very well. Again, the thin

airfoil and present theory are closely matched. This result should be

expected since, foc two-dimensional flow, the present theory would become

thin airfoil theory as the limit of the wing subpanel areas with a constant

ACp approached zero.

For a finite wing, Fig. 19 compares theoretical predictions with

experimental data (Ref. 27) at several Mach numbers for a wing that is both

cambercd (N-, C\ . -1.0 meer. .mtei I Tne) and f-rsted. It should be noted

that the £.pcr Lrtal model was tapered and t'e maximum camber varied with

the spanwise c)ordinate. In the theoretical model the wing was replaced

by the mean camber line at each 20 percent of lthe ,.pan and this distribu-

j tion remained constant for that section. Also, a linear spanwise

distribution of twist was assumed, while there was a slight variation

from this experimentally. Nontheless, agreement of theory and experiment

is very good-over the entire experimental Mach number range..I
1
I
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I
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V. CONCLUSIONS - SU33ONIC FLOW

From the preceeding results, it is seen that the present theory

produces good results in the inviscid flow regime. Configurations

ranging from a basic wing to varying combinations of wings, elevons, gap,

and fuselage may be modeled as well as moderate wing and/or elevon defor-

mations. Since compressibility effects are included, reasonable results

up to large (subsonic) Mach numbers are generally obtained.

For the finite gap case, the theory provides an excellent means for

obtaining early design characteristics in a short time for small angles-

of-attack and elevon deflections. However, it is shown that for large

elevon deflections there was a considerable decrease in total lift and

moment characteristics when a large gap was present. This appears to be

a viscous phenomena and therefore cannot be modeled with potential flow

techniques. Vortex rollup, which must be included for very large gaps,

has also been neglected in the present theory. Results for cambered,

twisted, and arbitrarily deformed wings may also be obtained easily with

the present theory. Results are good as long as the requirements of

potential flow are met on the surface.

Several advantages of the current method occur as a consequence of

the assumption of a constant AC over a sufficiently small subpanel of theP

wing. The wing can be divided into many subsections, yet only a relative-

ly small matrix must be inverted to obtain the load distribution. This

assumption also allows AC to be taken outside the downwash integral and
P

yields a closedi form solution to the equation. As a result, this method

53
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requires considerably smaller computational times and storage space than

many methods, such as vortex lattice, since they usually require a

matrix equivalent in size to the number of wing subpanels.

I
I
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VI. SUPERSONIC FLOW - THEORY

Fundamental Equations

The theoretical approach for the supersonic Mach number regime is a

potential flow formulation in which solutions are superimposed. The

source solution introduced by Evvard 28 forms the basis of 3-D supersonic

theory used in the present analysis and vorticity paneling is added to

account for wing deformations. The vorticity paneling, as previously

introduced, is actually a continuously distributed doublet panel which

satisfies the supersonic potential equation

1fY(x y) 01x-C(xYZ) i So ___°'° (x-x=) fdx dy (52)
21y = 0 (Y-Yo0 )2+Z2 V(xXo)2_ 2 (y_yo)2_ 2Z2J  0 0

As for subsonic flow, the vorticity distribution I(x ,y ) may be replaced
0 0

by the pressure loading coefficient AC p(xy ). The downwash equation

is obtained by differentiation in the standard manner and when evaluated

in the z=O plane (planar flow) becomes

1 AC (x ,y ) (x-x

_T f p 0 0 dx dy (53)

S 0 (yy 0)2 v(X-Xo)2-
2
(y-yo)2 0 0

where the area S is that contained on the wing surface in the upstream
0

running Mach cone emanating from the field point (x,y). Although the

vorticity paneling is formulated for planar flow, it may be used to

account for non-planar velocity components if the slope of the nonplanar

j surface is properly taken into account. A more detailed discussion of

how this is done is explained later.

55
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The assumed pressure loading cousists of the basic three-dimensional

supersonic flow term plus the perturbation term fron the vorticity panel-

ing and is then written as

N M
AC (xy o ) = P(xoYo)Sin(a49o ) + P(X n 0 BL m co-2 (54)

p 0 0 0Om0=0

The first expression on the right-hand side is the 3-D loading term

modified to account for local wing deformations and is valid for both

subsonic and supersonic leading edges. The second term uses the 3-D
15

pressure functions P(xo,Y o ) as a weighting function which, when multi-

plied by the unknown coefficient BL , and the series ql cos -- - accounts

L 2

for small deformations in the wing surface in the upstream Mach cone from

the point (x,y). The order of the terms in the second expression seldom

exceeds 3 or 4 and for planar wings, the entire second term is unnecessary.

Increasing the polynomial order for larger wing deformations or higher

angles of attack does not seem to provide better agreement with experi-

mental data.

The form of the assumed pressure Icading term to account for per-

turbation velocities was chosen as a polynomial in the spanwise direction

and a trigometric or Fourier series type function in the chordwise

direction. No strong justification for these assumptions can be given

except that in the spanwise direction the 3-D loading term should produce

acceptable results, even for deformed wings, and corrections, which the

polynomial provides, should be small. Subsequent good agreement with

experimental data seem to justify this assumption. In the chordwise

direction where more severe changes occur in the pressure loading, a

trigometric correction, which is somewhat more general than theI
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polynomial, was chosen with subsequent good agreement with experimental

data.

As in subsonic flow, the AC term is removed from the integral inP

eq. (53) and the resultant expression is integrated in closed form over

a small subpanel. Results of this integration over various shaped

subelements is presented in Ref. 15.

It is convenient to define the value of this integral as AK so that

the total downwash at a point (x,y) becomes

I
w(x,y) = (AK)i[ACp(Xo5 (y o ) 55())

i~l 1 p 0 ~(55)

where I is the total number of subpanels in the region (cone) of integra-

tion. The boundary condition is

w(x,y) + sin (t+6 C) = 0 (56)
C

where e is the local deformation angle at a control point. Rearrangingc

and combining equations (54), (55) and (56) yields

I
(AK).[P(x ,y ) sin (ct+6 )]. +

i=l 0 0 1

I N M
,y ) B , r C o s 2" .

i=l n= m=O 2

47r- sin(+0 ) (57)

C

where L = n + mN.

Body perturbation effects on the wing loading are accounted for by

assuming that the body is cylindrically shaped. The cylinder is gen-

erated with an infinite line doublet whose axis is in the z-direction

perpendicular to the wing planform. The results of adding the body to the

.-
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analysis simpiy adds another term to the right-hand side of eq. (57) which,

after a little manipulation, b~ecomes

4fra2 sina

a(a+n)2 (58)

where a is the nondimensional body radius define-d by a = r b/(b/2).

Equations (57) and (58) are combined and rearranged as

I N M

(AK). [P(x ,y ) Y Y BL rlm co =

i=I  1 0 o0 um=O L 2

S4-f 4T a 2sina

- sin (ot+O) + 4 asn)2

c 3(a+-1) 2

I

+ (AK)i[P(xoy ) sin(c+0 )]. (59)
i=I  0 1

The above equation represents a set of N simultareous linear alge-

braic equations and is conveniently arranged in matri- form for a

Gaussian reduction solution for the unknown coefficients B . Once the

I unknown coefficients are determined, the localized loading is obtained

from equation (54).

Lift and Pitching Moment for Wing Elevon Combinations

In the preceding section, the basic equations were presented for

finding the resulting pressure distribution on a wing or elevon in super-

Isonic flow. For the wing alone, these equations may be applied directly

since there is no upstream influence due to the elevon. After the

j pressure loading coefficients in eq. (54) are determined, the pressure

coefficient may be computed at any point on the wing surface and appro-

priate subsequent integration produces the lift.

I
I
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For the elevon, a similar procedure is followed with the exception

that the elevon is flying in the wake of the wing and therefore the down-

wash produced by the wing and the elevon must be considered. The mechanism

used to compute this downwash is discussed in another section.

The lift for the wing-elevon configuration is the sum of that pro-

duced by the wing and that produced by the elevon. It is convenient to

define nondimensiona], chordwise and spanwise variables for the wing as

w = (X-xLE)/Cw (60)

I and

T = y/(b/2) (61)

For the elevon, using the same coordinate system, these definitions

become

g = (X-CR-6)/cE (62)

and

nE = y/(b/2) (63)

With these definitions, integration of the pressure distribution

over the wing for the lift becomes
n=l w=l

CL b f (ACP Cw d'w)dqw (64)
w w

S=0w
and for the elevon

C b f f ( CEC d )dnE (65)
L E 2EEl

n=-l E=0

IA
I
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It is convenient to define sectional properties as

C =1
w

(cc) w = Cw J ACe  dCw (66)

w=0

and

E =1

(cck)= CE f ACPE d E (67)

E =0

from which we get the total lift coefficient

C= f [(cc ) + (cc )E]dn (68)CL Sk kE

n=0

Because of the nature of the pressure loading function, equation (54),

equations (66), (67) and (68) must be integrated numerically.

A similar analysis leads to the moment equation about the y axis

(see Figs. 1 and 2) as

Myf APw x dA + f APE xdA dyw(69)

A AE

For the first integral in eq. (69), we note that

x = XLE + C w  (70)

and

dA = dxdy = (Cwd )(b dri) (71)

and
b

xLE = y tan A = b n tanA (72)
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Using these definitions, the first of these integrals over the wing can

be written as

= qb f {ntanA[C f ACp d w ] + Cw2 fACp wdw}dn (73)

0 0 0

In a similar manner, the second of these integrals become

rf=i I I

12 = b f Rw+)[C E  d + C E Ac d}d (74)

ri=O 0 0

The moment coefficient about the y axis Ls defined as

CM = M /(qSc)Y

so that

71=i 1

CMy = f 2 ntanA(ccZ)w + cw 2 ACe wd w
y Sc Jf w w

T1=0 0

[(CR + )(cc) + C 2 f ACPE dCE ]}dn (75)

0

In order to evaluate eqs. (66), (67), (68), and (75), we must first

determine the constants, BL in eq. (54) for both the wing and elevon.

Since the elevon solution cannot affect the wing solution (zone of silence),

then the wing loading is solved independently of any elevon considerations

through a Gaussian reduction of eq. (59).

For the elevon solution, we must consider the downwash produced by

that portionof the wing in the forecone of some arbitrary point on the

I
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elevon. This downwash from the wing on the elevon will enter the elevon

solution through an additional term in the boundary conditions. That

is, for the elevon

(AK)i [ACe((x , )] = -- [ww + sin(a+6)] (76)

i=lE

where w is the downwash produced by the wing at a particular control

point on the elevon. Evaluation of w is considered in the next section.w

Wing Downwash on Elevon

To evaluate the downwash from the wing on the elevon, a direct

approach was first considered. That is, integration was to be carried

out over the forecone from a point on the elevon surface. However, because

of the gap between wing and elevon, this did not seem to be a feasible

approach, especially in light of its complexity. Thus another approach was

considered and used.

Since the wing solution is completed first, sectional properties on

the wing may be computed at any spanwise location. Thus the wing is

divided into equally spaced "strips" along the span and the sectional lift

is computed for each strip. It is assumed that a horseshoe vortex is

attached to each strip in a lattice manner whose strength is determined by

~the sectional lift coefficient. That is, from the Kutta-Jiukowski theorem,

the lift per unit span for some ith section isI
(AL/An)i = pVrj = 2qF i  (77)

Swhere

I F' = VII ~ i i

I
I



I

63

Placement of these vortices are shown in Fig. 20. Note that in the

figure, the bound portions are shown attached to the quarter chord and

the trailing legs trail b Iiind the wing to infinity.

If the wing is symmetrically loaded, the lift may be written as

1

L = qb f (ccR)w dnw (78)

0

so that for a strip

AL = qb f (cc) w d w

Dividing by An and equating to eq. (77) yields

ri=(i-f (cc ) dnI

n 2

If it is assumed tuat over th, strip the term cc ds constant, then the

integration may be c.;mpleted in closed form.

At the junction between ay' two strips, the resulting trailing fila-

ment strength is the difference between adjacent filaments and may be

written as

F1  c - (79)FRi - i+ I  kcc i  (zci+ 1

The starting point of these filaments is assumed to be the wing

trailing edge (for lack of a better assumption). Fortunately, the down-

wash induced from all trailing filaments is small in comparison to the

I!
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free stream components and thus an error in the starting point of the

filament does not significantly influence the final elevon loading.

Obviously, though, the filaments must start somewhere on the wing. From

From a planform view of the wing-elevon trailing filament configuration,

it may be shown that if a particular field point (x,y,z) is in the region

of influence of a particular filament starting at (x,yr), then

x > (xr+8!y.-rl) (80)

2 y 2  
2

where r y + z . That is, if eq. (80) is satisfied, then the field

point (x,y,z) "feels" the downwash from the trailing filament (x ,YF).

To compute the velocity induced at some field point (x,y,z), the

Biot-Savart Law is used as an approximation. Although this theorem is

actually only valid for subsonic incompressible flow, it will be suf-

ficient for the present analysis if proper account is taken for the

region of influence (zone of silence).

In vector form, the Biot-Savart relation governing the velocity

induced at some point by a vortex filament is

V(x,y,z) = - _ rd (81)
4 r

In this expression, r is the vector from thu field point to an

arbitrary point on the filament, dZ is a vectored differential length

along the filament, r is the magnitude of the vvxior r, and Y' is the

filament strength. Referring to Fig. 21, these quantities may be

written as

dT = (i cosO + k sin0 F)d (82)
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and

rt(x -x+L coseF)i + (y.-y)j + (LosinO1 - z)k (83)

Equations (82) and (83) are introduced into eq. (81) so that the

integrals for the three velocity components 
are

Z=L
0

V - f (Ylsin0F/Dm)dZ (84)

Z=0
Z=L

0

V = C ((xlsinO. + z cosO )/Dm)dZ (85)
y 4v i

Z=0

and
&=L

0

V =- f (y cos6F/Dm)d (86)
z 47r

Z=0

where

XI  X xF-x, Yl = YF-Y' 
(87)

A =2xI cosO F  2 z sinO (88)

B (x 1
2 + Y + z2) (89)

D =(L 2 + AL + B)3/2  
(90)

m 0 u

and

2 2L +A
o=_____ A(91)

(4B-A' 2 +AL +BI

I
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These integrals may be evaluated in closed form with the results

V = -Fr(yIsinO )I/(4TT) (92)

Vy = F(x1sinO F + z cosO )I/(4 T) (93)

and

V = F(y1coser)I/(47T) (94)

The induced velocity from these filaments on the elevon is of

primary concern and more specifically the velocity induced normal to the

elevon. In vector form, a unit normal to the elevon is

n = -i sin6+k cos6  (95)

so that

V = Vn = - V sins-V costS (96)
n x z

or

V = -FY1l[Cos(O +6)]/(4"T) (97)

Wing Trailing Edge Blocki;,- of Eleven

To complete the theoretical analysis, the wing thickness and blunt

wing trailing edge and the subsequent effect on the levon loading must

be considered in addition to the gap between the wing trailing edg,. and

the elevon leading edge. The configuration being used in this analy.sis

is shown in Figure 22. The flow just aft ot the bMunt wing trailing

edge is highly turbulent as expected and details de.scribing the sub-

sequent flow field is fundamentally grounded in solutions of the Navier

Stokes equations. The implication then is that viscous elfects domini

the solution as was suggested in Ref. However, this conclusion is

not necessarily true. It is clearly recognized that viscous eftects

I
I
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immediately behind the wing trailing edge are very important, but it is

believed that the dominant effects over most of the elevon can be pre-

dicted by potential flow methods. Justification of this conclusion is

presented in a later section.

As depicted in Fig. 22, the flow is assumed to be tangent to the

surface of the aft portion of the wing for all angles of attack. The

streamlines thus emanating from the upper and lower aft wing surface

impinge on the elevon surface as shown in Fig. 22, forming a "blanked out"

region bounded by the blunt wing trailing edge, the upper and lower

streamlines and a section of the elevon chord line. in this blanked

region, details of the flow field are not well known. Thus for purposes

of this analysis, it is assumed that this wake pressure coefficient is

zero such that essentially free stream conditions exist.

From Fig. 22 the location of the aft impingement point is

(x C )tan - 12
xAF T  .C R . . + (98)

tan' - tan'

and the forward location i, ,

(x -(,R t;n +- L
XFW = CR  + .. . .. . , 4 (99)

tan + tan' 1"

where )T is the positive sortace slopt of the alt portion of the wing,

That is, for the schematic in F g. 22, is about .'. and ' is about

-10'.

Equations (98) and (99) are valid lor 0.0. If the elevon deflec-

tion angle is positive, then the forward location is determined from

eq. (98) and the aft location from eq. (99). It is obvious from Fig. 22

i.i
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that there are elevon angles where the leading edge of the elevon lies

entirely within the wake region with some portion of the aft section out-

side the wake. Also, for very small elevon deflection angles, the entire

elevon is immersed in the wing wake and thus is completely unloaded.

In order to justify the use of eqs. (98) and (99) to form a blanked-

out region (Newtonian approach) a wind tunnel experiment was designed to

study this flow field. A two-dimensional model consisting of a wing with

a blunt trailing edge and a diamond shaped elevon was constructed (see

Fig. 22) and tested at a Mach number of 1.94 in a 4" by 4" test section.

The total pressure was about 30 psia with a freestream unit Reynolds

number of 1.6 x 106. Selected schlieren photographs of the results of

these tests are shown in Fig. 23. In the upper left where 'i = 0.0' and

6 = 0.0', the elevon lies entirely within the wake of the wing as is

clearly seen. The important thing to note here, though, is the well de-

fined streamline emanating trom the top skiriace of the wing and impinging

on the elevon boundary layer near the apex ot the elevon midclord. In

the upper right wherte L= . and - - th( leading e,,ge of the

elevon is about 4' iutsidt, ;i, wing,, w; k, rt-gion it , pparent lv t ill

inside the wing l'indarv liver. Fhn ,lit i njitgt rert ;,,lilt d Il it ,IItj er

elevon surface is st ill >1 %, . i; i l l bi lt t , , rw.i' 1,,,int , ,iTA be

clearly located.

In the lower left, whit-re -4. 1-4 a st -- 4) , the at i :p I g et n

point is located easily wiile Lilt wL I vo le.d Ing edge remains submere.,d in

the wing wake. In the lower right where = -4.14' and -10.(0 ' , the

results are incGonclusive. The overall results of these tests indicate

arIvr] et

I



Fig. 23. Sc'il1ieren Photo-raphs of the 1 iunt Wing Trailing Edze and

Eilevon Leading Edge, M=1.94.



I

1 73

[ that some sort of blanking region is formed which is not totally inde-

pendent of angle of attack and is more strongly dependent on the elevon

deflection angle than that predicted by eqs. (98) and (99). Nevertheless,

these equations do provide "bounds" for the mathematical analysis and, as

will be shown later, provide good agreement with experimental data.

I

I

I
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VII. SUPERSONIC FLOW- RESULTS

Comparison with experimental data of the theoretical analysis as

previously presented is divided into two major categories: (1) planar

wings and (2) deformed wings. In many cases, the planform shapes chosen

were dictated by available experimental data. In some cases, experimental

data was available for both deformed and undeformed wings with the same

planform shape. Four of the planform shapes analyzed are shown in Fig. 24.

Planar Wings

Results of the pressure loading and sectional lift and pitching

moment for three of these configurations are shown in Figs. 25-30 for

selected Mach numbers and low angles of attack. More complete data summarv

results for these configurations are presented in Appendix A. In these

figures the theoretical solution for the pressure loading is basic three-

dimensional supersonic theory as presented in Rets. I' and 18. No

vorticity paneling Is required. The double summat ion tcrms in eq. (54) are

omitted and only the P(xoy o ) sin (i) term is used Lk, comput,, the pressure.

In most cases, the sectional normal forces agiree wl1 with the exper-

imental data especially on the inboard sections ot the wings. It is

observed that the worst agreement is near the wing tips a, one would

expect. This deviation at the tips is not as detrimental as might first

appear since most of the configuration loading is concentrated on the

inboard sections.

1 74
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Fig. 24. Dimensional Sketch of Four Wing Planform Shapes Under Study.
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The sectional moment coefficients about the y-axis shows the same

kind of agreement as does the normal forces. In each case the dis-

crepancies are not severe and the location of the sectional aerodynamic

center is predicted quite well.

The experimental data for these plots (including those in Appendix

A) were obtained from Refs. 29 and 30 and was integrated numerically to

obtain the sectional normal forces and pitching moments. Integration to

produce the normal forces agreed quite well with that tabulated in the

original reports; however, the sectional pitching moment data as pub-

lished in Refs. 29 and 30 was not reproducible by numerical means. Con-

sequently, these experimental data as presented in Figs. 25-30 (and

Appendix A) for the sectional coefficients was obtained by numerical

integration of the pressures and is not that which is "tabulated" in

Refs. 29 and 30.

For these planar configurations, the theory is a linear theory and

thus tabulation of the total forces and moments is sufficient to illus-

trate overall agreement. Table 2 is a comparison of the lift curve slope

and moment curve slope for the three planar configurations under study.

as found by numerical integration of the curves in Figs. 26, 28 and 30.

From Figs. 25-30 and those in Appendix A, it is difficult to picture

exactly how the sectional loading profiles are spread over the wing.

Consequently, Figs. 31-34 were produced showing the isobars and the large

influence produced by the wing tips. Note also the supersonic leading edge

behavior for the low aspect ratio trapezoidal wing and rectangular wing.

It is apparent from Figs. 25-30 and from Table 2 that the linear

theory is excellent for most cases considered. The disagreement near the
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Figure 26. Sectional Normal Force and Pitching Moment for a Flat
Trapezoidal Wing; M = 2.01, a = 4.0.
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Figure 28. Sectional Normal Force and Pitching Moment for a

Flat Delta Wing; M = 2.01, a = 4.0.



II
83

FLAT TAPERED WING o FLAT TAPERED WING

ALPHA = 2.0000 cRLPHA = 2.0000
LAMOR = 54.1154 K LADA = 54.1154
MACH NO. - 1.6100 MACH NO. = 1.6100
CR = 0.9524 CR = 0.9524
Cf = 0.1905 CT = 0.1905
Y/IB/2) = 0.0500 (m /B/2) 0.3500

o 0

°3 mo

D

o O0 02 0o .5 'u .. Oo FA TD AR D N

C.Ho 0.25 0'.50 0.75 1.00 To 0 0.25 0.50 0.75 1.00
PSI PSI

o FLAT TAPERIED WING 0FLAT TAPEREO WING

O LPHA 2.0000 ALPHR = 2.0000
LAMDA = 54.1154 LRMDR 54.1154
MACH NO. = 1.6100 IMACH NO. = 1.6100
CR = 0.9524 CR = 0.9524

o CT = 0.1905 CT = 0.1905
e Y/(B/2) = 0.2000 Y/(B/2) = 0.5000

o 0o

D

C3 0

00

ooo1

9jO0 0.25 0'.50 0.75 1.00 T O0 025 0.50 0.75 1.00

SPSI PSI

1Figure 29. Pressure Distribution on a Flat Tapered Wing; M = 1.61, a = 2.0•

I

I
I



I

84

I
o FLAT TAPERED WING

C" ALPHA - 2.0000
LAMOR = 1q, 15 4 ,)
MACH NO. = 1.8100
CH = 0.9524

CD CT = 0.1905
Y/8/2) = 0.7000

C

CDD

00

o 0  CD ( D DC

'b.oo 0'.25 0'.50 0.75 1.00
PSI

o FLAT TAPERED WING

CD ALPHA = 2.0000
LAMDR = 54.1154
MACH NO. 1.6100
CH = 0.9524

C) CT = 0.1905
mY/(8/21= 0.9000
C D-

o C

o-C'

0O0

(D
0 (

0

'0.00 0'.25 '0.50 0. 75 1.00
PSI

F
Figure 29. Continued

I
1
I



85

Co FLAT -IFPERELU WI G
Cuj

o; RLPH-R - P.OOUO
LRMOR = 54.1154~
MACH NO. = 1.610(1
CR9 = 0.9'1'24
CT = 0.1905

0

)

CD D

CDD

0.00AC NO. = .0 10.10

I RLHR = 2.0024

CT = 0.1905

CD-D

CD

0D

0D

'000 025 0.50 0.75 1- .00

Figure 30. Sectional Normal Force and Pitching Moment
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Table 2

Low AR High AR
Delta Trapezoidal Trapezoidal
Wing Wing Wing

C Experiment .029 .033 .048
L

a= 0 Theory .029 .032 .053

(CM) Experiment -.029 -.019 -.064

a= 0 Theory -.029 -.019 -.073

leading edge and wing tip is to be expected and is due to wing thickness,

shocks, and wing twist; the latter, of course, is not significant for the

low aspect ratio wings.

Deformed Wings

These same wings under various kinds of deformation were also

1 analyzed by including vorticity paneling as well as the 3-D theoretical

loading terms in the AC distribution. Deformation shapes of three of

1 these wings are shown in Fig. 35. The delta wing (No. 1) in Fig. 35

was cambered and the slope relative to the chord line of the mean

j camber line was determined to be

e = -3 00825 + tan-'[tan 60 (F- n+n)] (100)

where f=y/(b/2) and =(x-xLE )/c. The camber (see Fig. 35) is uniform in

the spanwise direction and produces a maximum deflection angle of three

degrees relative to the chord line. Although this seems like a small

task, this is actually a severe test of the theory and its agreement with

experimental data. In Figs. 36 through 41, results are presented for threeI
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Figure 37. Sectional Normal Force and Pitching Moment for a
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deformed configurations at a Mach number of 2.01 and angle of attack of

6 degrees. A more complete summary of agreement between the theory and

experimental data is presented in Appendix A.

For the cambered delta wing, agreement at the inboard stations is

relatively good while outboard agreement is rather poor. However, note

that in the regions where most of the wing loading occurs, the agreement

is satisfactory. Additionally, the inclusion of the doublet paneling

terms in the mathematical formulation provides the correct trends and an

added degree of accuracy.

For the same planform shape, linear spanwise twist is added to the

camber deformation such that the mean camber surface is now defined as

el, j = tan-[0.l4054l( -Cn+n)q] (101)

Results of this configuration are shown in Figs. 38 and 39 and in

Appendix A. Similar results are obtained for these cases as was observed

for the cambered (alone) case. Agreement is acceptable at the inboard

stations but is questionable at the outboard stations.

In observing the experimental data for both the cambered alone and

the cambered and twisted wings, the outboard stations (r, ' .5) appear to

have a supersonic leading edge. Whereas the high leading edge sweep

angle gives rise to a subsonic leading edge. In addition, at the ? = 0.5

station, a weak shock appears to be located near = .4 for M = 1.61 but

is not present for M = 2.01 (see Appendix A). Since the theory does not

account for the shocks, the disagreement in this region is not surprising.

The next wing subjected to the theoretical analysis was a "warped"

trapezoidal wing (see Fig. 35). For both M 1.61 and 2.01, the leading
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edge is supersonic and multiple "fold over" regions occur because of the

low aspect ratio of the fact that the wing is trapezoidally shaped. The

equation governing the mean warped camber surface is

= f -tan- [-0.0334547 sin(- --)sin(T)] (102)
i,j2

Results for this wing are presented in Figs. 40 and 41 and in

Appendix A. Considering the wing deformation, the agreement is remark-

ably good over the entire wing for both Mach numbers. Note also that the

addition of vorticity paneling to the AC distribution predicts the right

trends and correctly accounts for local wing deformations in the upstream

running Mach cones.

', I
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Elevon Loading

Very little experimental data exists for loading on an elevon

immersed in the wake of a wing in supersonic flow. The only data found

was Nielsen (Ref. 1) which included the blunt wing trailing edge as

previously discussed. Figure 42 is a comparison of the normal force

coefficient, CN, and hinge moment, C versus wing angle of attack for

an elevon deflection angle of -10'. In this figure, the present theo-

retical results are compared to experimental data and to the theoretical

results from Ref. 1. In the present theory, the blanking effect from

the wing is included which seems to properly account for the normal force

coefficient variation. It is noted also that compressibility or the

Mach number effect, is also properly accounted for, thereby providing

excellent agreement (at least for this case) between experimental data

and theory.

The hinge moment for the elevon is also plotted and agreement here

is not good except at very small angles of attack. Reasons for this

discrepancy may be the result of one of the following problems in the

analysis or perhaps combinations thereof: (1) It is known that viscous

flow in this region could cause large changes in the pressure field as

originally hypothesized in Ref. 1. However, because of the excellent

agreement of the normal force coefficient data from a potential flow

analysis and the schlieren photographs of this region, it is certainly

not conclusive that viscous effects dominate the solution. (2) The

downwash model as outlined in the theory section is inadequate in pre-

dicting the correct downwash velocities. As a matter of fact, if the

downwash distribution is assumed to be constant across the elevon span
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6 -100, Gap =0.0

06 = 2.. Ga200.

M = 2.99 u.1

- -M =2.20 (Ref. 1)

M = 1.62 (Ref. 1)

CC

-0 2.50 5.D2 7.5~ S.C l

;i

Fig. 42. Elevon Normal Force and Hinge Moment Coefficients

versus Wing Angle of Attack, 6 -1~0', Gap =0.0.
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and chord slightly better results are obtained. However, since the total

normal force is predicted quite well, the chordwise distribution is

apparently in error. From the schlieren photographs (Fig. 23) it appears

that much more of the upper surface of the elevon may be blanked out than

that predicted in the theory. If this were true, the normal force coef-

ficients would decrease slightly and the moment coefficients would

increase (leading edge up) which would give rise to an increase in the

associated hinge moment. (3) The assumed location of the trailing

vortices relative to the elevon is perhaps incorrect. (4) In analyzing

the experimental data from Ref. 1, there is possibly a problem in inter-

pretation and conversion to the reference areas and lengths used in the

present theoretical analysis.

In conclusion, it is recognized that the flow field immediately

behind the blunt wing trailing edge and elevon leading edge is not well

understood. Detailed experiments to measure pressure and loads accom-

panied by schlieren photographs are required before an adequate model can

be postulated.

I Finally, Figure 43 is a plot of the theoretically predicted normal

force and hinge moments for the elevon when a gap exists between the

elevon and the wing. Similar results are obtained as for the "no gap"

case but the influence of the gap is clearly identified and the present

theory predicts the correct trends.1
I
I
I
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Cap= 0.,

-~~ Gap = 4.011 - -

N 2.99

M = 2.20

M = 1.62

/
/

N= 2.99

-100

Fig. 43. Theoretical Normal Force and Hinge Moment Coefficients
versus Wing Angle of Attack for Gap 0.0 and 4.0",
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TABLE A

Figure
Number Deformation Equation

Al-A28 No deformation

Cambered Delta Wing
A29-A32

e -3.00825 + tan-'[tan 6.0'(x - xy + y)]

Cambered and Twisted Delta Wing

A33-A6 0& tanI H(tan S. 0 )(xy - xy- + y2 )]

Warped Trapexoidal Wing

A37-A40 ~ ~ e -tan -' [- 0. 033654 [Tsin ( - Y) sin ( x)I

Ill
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Figure Al. Pressure Distribution on a Flat Trapezoidal Wing; M = 1.61,

o = 2. 0.
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Figure Al. Continued
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Figure A3. Pressure Distribution on a Flat Trapezoidal Wing; M = 2.01,
= 2.0.
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Figure A4. Sectional Normal Force and Pitching Moment for a

j Flat Trapezoidal Wing; M = 2.01, = 2.0.
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Figure A5. Pressure Distribution on a Flat Trapezoidal Wing; M =1.61,

a= 4. 0.
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Figure A8. Sectional Normal Force and Pitchimg Moment for a
Flat Trapezoidal Wing; M 2.01, ot 4.0.
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Figure A9. Pressure Distribution on a Flat Trapezoidal Wing; M = 1.61,
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Flat Trapezoidal Wing; M = 1.61, c = 10.0.
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Flat Delta Wing; 14 = 1.61, jx 4.0.
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Figure A19. Pressure Distribution on a Flat Delta Wing; M = 2.01, x = 10.0.
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Figure A21. Pressure Distribution on a Flat Tapered Wing; M = 1.61, = 2.0.
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Figure A22. Sectional Normal Force and Pitching Moment for a

Flat Tapered Wing; M = 1.61, a 2.0.
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Figure A24. Sectional.Normal Force and Pitching Moment for

a Flat Tapered Wing; M =2.01, a = 2.0.
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Figure A25. Pressure Distribution on a Flat Tapered Wing; M 1.61, a = 4.0.
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Figure A26. Sectional Normal Force and Pitching Moment for

a Flat Tapered Wing; M = 1.61, x = 4.0.
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Figure A27. Pressure Distribution on a Flat Tapered Wing; M = 1.61, a = 10.0.
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Figure A27. Continued
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Figure A28. Sectional Normal Force and Pitching Moment for a

Flat Tapered Wing; M = 1.61, Ct = 10.0.
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Figure A30. Sectional Normal Force and Pitching Moment for a

Cambered Delta Wing; M = 1.61, c = 6.0.
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Figure A32. Sectional Normal Force and Pitching Moment for a

Cambered Delta Wing; M =2.01, ot = 6.0.
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Figure A33. Pressure Distribution on a Cambered and Twisted Delta Wing;

M = 1.61, a = 6.0.
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Figure A34. Sectional Normal Force and Pitching Moment for a

Cambered and Twisted Delta Wing; M - 1.61, a - 6.0.I
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Figure A35. Pressure Distribution on a Cambered and Twisted Delta Wing;

M 2.01, ¢. = 6.0.
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Figure A36. Sectional Normal Force and Pitching Moment for a
Cambered and Twisted Delta Wing; M 2.01, a~ 6.0.
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Figure A37. Pressure Distribution an a Warped Trapezoidal Wing; M =1.61,

a = 6. 0.
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Figure A38. Sectional Normal Force and Pitching Moment for a
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C:)



169

,- WARPED TRAPEZOIDAL WING 0 WARPED TRAPEZOIDAL WING

L. .0" ALPHA = 6.0000C A L P H A = 6 .0 0 0 0 M O - 2 5 7 1

LAMOR = 25.7917 M'- LANOA = 25.7917
MACH NO. - 2.0100 MACH NO. = 2.0100
CR = 1.732L4 II CR = 1.732u,

CT = 1.2488 CT = 1.2488
CY(8/2) 0.1000 Y/(B/2) = 0.5500

0

U0 CD00 00_)

00

00

0 025 PS. PS I

PSIPS
SWARPED TRAPEZOIDAL WING 0C WARPED TRAPEZOIDAL WING
Go. P" £ H A 

=  
6 .0000

RLPHR = 6.0050 LR 2.0000

LAMOR = 25.7917 LtD 571

MACH NO. = 2.0100 MACH NO. = 2.0100

CR - 1.7324 CR = 1.73248

CT = 1.2488 Cl = 1.2466
Y •f2) 0.3500 w Y/(B/2) 0.6700

8l-2 0= D.50

00

0-: 00

°.0 -

U8- 0 °  c:)

00

0o

00

C3 0

0 0 7 1

9i.oo 0.25 0.50 0.75 1.00 0.o 0.25 0.50 0.75 1.0
PSI PSI
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Figure A40. Sectional Normal Force and Pitching Moment for a
Warped Trapezoidal Wing; M4 2.01, ot =6.0.
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SUBSONIC COMPUTER PROGRAM USERS GUIDE

I. General Description of the Main Program and Subroutines for
the Subsonic Program

MAIN PROGRAM - This is the executive segment which primarily controls and

coordinates the various tasks performed by the subprograms. Other

functions performed by the main program include: (a) all input and the

majority of output; (b) non-dimensionalization; (c) calculation of the

boundary conditions (the "B" matrix); (d) computation of all total

characteristics, both exact results and numerical integrations (this

includes wing-elevon, fuselage, suction, and all combinations of these).

BLOCK DATA - This data gives coordinates of a non-planar mean line (XTB,ZTB)

as well as the slope (ZPTB) for use in calculating wing deformations.

The present data is for the deformed Hawk wing.

SUBROUTINE SURFIN - This routine computes the value of the surface integral

(the "A" matrix) by summing the effects of each grid panel at a control

point. It is called once for the wing and once for the elevon for each

control point.

SUBROUTINE SECLM - The sectional loading characteristics are calculated for

the wing or elevon in this subroutine. It is called after the pressure

loading coefficients are determined.

SUBROUTINE PRESUR - This subroutine is used, after the pressure loading

coefficients are determined, to calculate and print ACp at NSPAN by

NCORD points on the lifting surfaces.
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]SUBROUTINE GEOM - This subroutine sets up the geometry of both the grid

panels and the control points, and then centers the control points

inside the grid element in which they appear. Basically, a cosine

distribution is used for both the grid elements and control points.

This routine is called once for the wing and once for the elevon.

SUBROUTINE INTV - This routine contains the actual equations of the sur-

face integral and, therefore, is utilized by SUBROUTINE SURFIN.

SUBROUTINE INVERT - Gauss elimination is used in this subroutine to

"invert" the A matrix and solve for the unknown leading coefficients,

B 's.
nm

SUBROUTINE HINGE - This contains the equations of the closed form solution

for the elevon hinge moment.

SUBROUTINE TLUP - This is a "table-lookup" routine which uses the data

given by the variables in BLOCK DATA to interpolate for wing mean line

slopes used in determining deformation angles. It is called by

FUNCTION WARP.

FUNCTION WARP - This function uses either the table-lookup or a function

definition to find wing/elevon deformation. It is called by both the

main program to determine deformation of control points (included in

the boundary conditions) and by SUBROUTINE SURFIN to determine deforma-

tion of grid panels.
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II. INPUT DATA

A. Data Cards:

Card No. Format Variable List

1 18A4 WING

2 7F10.0 SPAN,CR,CT,LAMDA,SAREA,CBAR,MACH

3 F10.0,15 ALPHA,KSTOP

4 1015 NC,NS,NX,NY,NCF,NSF,NXF,NYF,NSPAN,
NCORD

5 5F10.0 CRF,CTF,DELTA,ALTWMX,EPS

6 F1O.0,15,2FlO.O HNL,IDEF,AMP,DB

(Additional 3F10.O ALPHA,DELTA,ALTWMX
cards)

("Additional cards" allows more than one case of the given
geometry to be run with different boundary conditions.
There should be (KSTOP-1) additional cards.)

B. Variable definitions (all linear dimension units must be consistent)

WING - Alphanumeric problem description

SPAN - Total wing span

CR - Wing root chord

CT - Wing tip chord

LAMDA - Wing leading edge sweep angle

SAREA,CBAR - Reference area and reference length. If 0.0 is input,
the total area and mean aerodynamic chord will be

calculated and used.

MACH -Mach number

ALPHA - Angles of attack of wing, in degrees. Leading edge up
is positive.

KSTOP - Number of cases of different boundary conditions that are
to be run.

I
1
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NC,NS - Number of chordwise and spanwise control points (re-
spectively) on the wing (typically 4x4).

NX,NY - Number of chordwise and spanwise (respectively) grid panels
on the wing (typically 45x45).

NCF,NSF - Chordwise and spanwise control points on the elevon
(typically 3x4). NSF must be equal to NS.

NXF,NYF - Chordwise and spanwise grid panels on the elevon
(typically 20x45). NYF must be equal to NY.

NSPAN,NCORD - Number of spanwise by chordwise points at which AC
distribution is to be printed out. P

CRF - Elevon root chord

CTF - Elevon tip chord

DELTA - Elevon deflection angle, in degrees. Trailing edge downward
is positive.

ALTWAX - Maximum twist angle of the wing tip, in degrees. Leading
edge down at the tip is positive.

FPS - Gap distance between wing and elevon.

HNI, - Hinge line location from elevon leading edge.

IDEF - Deformation check. If IDEF=l, the Table-Lookup Routine is
used. If IDEF=O, a function definition is used.

AMP - Amplitude of a function deformation.

DB - Diameter of fuselage.

III. OUTPUT DATA

Major Headings Are:

A. INPUT DATA - Dimensional imput as it was given on the data cards.

B. ACTUAL VALUES USED IN PROGRAM - Variables non-dimensionaliz~d

by b/2.

C. CONTROL POINTS - Location based on non-dimensionalization of
local wing chord by b/2. Gap distance is not included in XO.
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D. BOUNDARY CONDITIONS

I - Control point number.

B - Boundary condition matrix values.

XO,YO - Control point location as above, except with gap distance
included.

ALTW - Local twist angle at the control point (degrees).

TAU -Local deformation angle at the control point (degrees).

E. POLYNOMIAL COEFFICIENTS - B 's of pressure loading function.
nm

F. PRESSURE DISTRIBUTION

ELEVON LEADING EDGE - Location in percent local chord (gap included)

Y - Nondimensional spanwise location of the given pressure.

X - Nondimensional chordwise location in percent local chord
(gap included).

XDIS - Chordwise location in terms of nondimensionalization by b/2.

DCP - AC (pressure loading)P

C - Local chord length of the wing only.

G. SECTIONAL CHARACTERISTICS

CLW - cc, of wing only.

CMW - c2cm of wing only

CLE - cc, of elevon only

CMH - c2 c of elevon onlym

CCL - cc z of total wing-elevon.

CCM - c2c of total wing-elevon

XCP - Center of pressure in percent local chord behind the leading
edge.

Y - Nondimensional spanwise location of the sectional characteristics.

C - Local wing chord nondimensionalized by b/2.

I
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CF - Local elevon chord nondimensionalized by b/2.

CTDT - Total local wing-elevon chord (gap not included)

CDW CCD of wing only

CDE - ccD of elevon only
Di

CCD - ccD of total wing-elevon

H. TOTAL FORCES AND MOMENTS

TOTAL LIFT, etc. - Characteristics of wing-elevon combination.

CORRECTED LIFT - Lift multiplied by sin u.

LIFT AND MOMENT DUE TO SUCTION - Contribution of suction only.
Lift value is correct only when o>O. Both terms are incorrect

for 6#0.

FUSELAGE LIFT AND MOMENT - Contribution of fuselage only.

WING-FUSELAGE... - Wing-elevon fuselage characteristics.

TOTAL CONFIGURATION...- Wing-elevon-fuselage-suction characteristics.

HINGE MOMENT ABOUT ELEVON HINGE LINE - Elevon hinge moment.

IV. NON-PLANAR CONFIGURATION OPTIONS

A. Wing Twist - Statement numbers 2310 and 4540 calculate wing twist
with a linear distribution along the span (YO(J)). Other (spanwise)

variations may be used by substituting the proper equation.

B. Deformations

1. Statement numbers 2200 and 5430 must be deleted if the elevon

is to be deformed in addition to the wing.

2. The FUNCTION WARP routine supplies the deformation angles

a. If the input variable IDEF is 0, the equation for WARP
given by statement number 9430 is used to compute deforma-
tions. The variable (also input) AMP may be used to
modify this equation. The supplied equation must be for

the slope (dz/d ) of the mean line. Different functions
could be used at different spanwise locations if the
variables YO(J) in statement number 2160 and YA in state-
ment number 5450 are included in the argument list, and
the appropriate modifications are made to FUNCTION WARP.

b. If IDEF > 1, a table lookup routine is used to compute de-

formations based on a numerical table given by the variables
in BLOCK DATA.

...... . .. .. . .. . , .. . . . .. . .. .t- .' .. = ; .. - N . . " "
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SUPERSONIC COMPUTER PROGRAM USERS "UIDE

I. General Description of the Main Program and Subroutines
for the Supersonic Program

MAIN PROGRAM

This is the executive portion of the program and basically controls

the sequencing of the other subroutines. All data to be read into memory

is completed here as well as all nondimensionalization. Decisions are

made on the type of pressure solutions desired and appropriate transfer

of control is made. Geometry for the vorticity paneling for the wing

and elevon is completed. Wing pressure solutions are called and the

trailing legs vorticity strengths are computed. Most of the entire

elevon solution is complete in this program segment and appropriate

computational output is generated.

Subroutine BLOCK DATA

This subroutine establishes the spanwise locations at which the

chordwise pressure distribution si computed. If one wishes to alter these

locations, it must be done in this subroutine.

Subroutine DAUGHN

This subroutine calculates the downwash of any arbitrary location on

the elevon due to the trailing vortices on the wing. This routine is

called after the wing loading and trailing vorticity strength is estab-

lished.
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Subroutine EXACT

This subroutine calculates the pressure distributions on the wing or

elevon using planar three-dimensional supersonic flow theory. This

subroutine calls the load coefficient subroutine where sectional forces

and moments are calculated.

Subroutine LODCOF

This subroutine takes the AC arrays and integrates the chordwisep

distribution using Simpson's Rule. It integrates the spanwise distribu-

tions using trapezoidal integrations.

Subroutine DOWN

This subroutine calculates a numerical value for the downwash on

the wing only at some (x,y) location. It is used primarily to check

boundary condition agreement.

Subroutine SURF

This subroutine computes the surface integral over the forecone

from the field point (xy) by summing the contribution from each subpanel.

In doing so it loads the "A" matrix to be inverted later for the unknown

polynomial coefficients, BL.

Function CW

This function evaluates a cosine function which is used frequently

in the program.

Subroutine INTV

This subroutine evaluates the results of the downwash integral over

a subpanel.

!
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j Subroutine INVERT

This subroutine is a matrix "inversion" routine which actually uses

a Gaussian reduction to find the unknown coefficients, BL.

Function PRESS

This function evaluates the appropriate expression to find the ACp

at a point using supersonic three-dimensional theory.

Subroutine ELLIP

This subroutine numerically evaluates an elliptic integral used in

Function Press.

Subroutine THA

This subroutine establishes the deformation equations of the deformed

wings and returns the local wing slope relative to the wing chord line.

Subroutine SUM

This subroutine performs a summation step used often in Subroutine

SURF.

Subroutine ETHA

This subroutine is identical to subroutine THA except the deformation

equations define local slopes on the elevon surface.

II. Input Data

A. Data Cards:

Card No. Format Variable List

1 815 IDOWN, IWGEX,IWGVP,IELEX,IELVP,
IPRINT, IWGDF, IELDF

2 615,2FI0.0 NC,NS,NX,NY,NCORD,NSPAN,VAG,DB
3 12A4 CONFIG

4 4F10.0 SPAN,CR,CT,LAMDA
5 4F10.O SWING,CBRW,MACH,ALPHA

6 415,FI0.0 LVON,NCE,NXE,NCRE,CRE
7 5F10.0 CTE,GAP,DELTA,XH,SIV

8 2FI0.0 THIK,THTED

!
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Additional configurations can be run by adding sets of cards

4 through 8. After the last set to be run, SPAN should be

read in as 0.0.

B. Variable Definition (all linear dimension units must be consistent)

IF (IDOWN = 1) a subroutine is called in which the downwash is
computed at all pressure computed points on the wing.

IF (IWGEX = 1) uses exact solution for wing.

IF (IWGVP = 1) uses vortex paneling also for wing solution.

IF (IELEX = 1) uses exact solution for elevon.

IF (IELVP = 1) uses vortex paneling also for solution of elevon.

IF (IPRINT = 1) a more extensive printout is produced at inter-
mediate computation points.

IF (IWGDF = 1) the wing has deformation as specified in function
THA. Otherwise wing deformation is zero (planar).

IF (IELDF = 1) the elevon has deformation as specified in function
ETHA. Otherwise elevon deformation is zero (planar).

NC is the number of chordwise control points for the wing.

NS is the number of spanwise control points for the wing.

NX is the number of grid points in the chordwise direction.

NY is the number of gridpoints in the spanwise direction.

NCORD is the number of chordwise points at which the pressure is
computed for the wing.

NSPAN is the number of spanwise points at which the pressure is
computed for the wing.

VAG is the angle in degrees that the vortices leave the wing
reference plane.

DB is the dimensional body diameter.

1 CONFIG is the alphanumeric configuration description.

SPAN is the dimensioi,a total wing span.
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ICR is the exposed wing root chord.

CT is the wing tip chord.

LAMDA is the wing leading edge sweep angle in degrees.

SWING is the dimensional reference area. If 0.0 is read in, the
program will compute and use the wing area as the reference
area.

CBRW is the dimensional reference length. If 0.0 is read in,
the program will compute and use the mean aerodynamic chord

as the reference length.

MACH is the freestream Mach number.

I ALPHA is the angle of attack of the wing alone in degrees.

IF(LVON = 0) the elevon is omitted from all computations and

the wing alone case is analyzed.

NCE is the number of control point locations on the elevon in
the chordwise direction.

NXE is the number of subelements on the elevon in the chordwise
direction.

NCRE is the number of points in the chordwise direction on the
elevon at which pressure is to be computed.

I CRE is the elevon root chord.

CTE is the elevon tip chord.

1 GAP is the gap distance between the wing TE and the elevon LE.

DELTA is the elevon deflection angle in degrees relative to wing
trailing edge down is positive.

XH is the dimensional distance from the Y axis to the elevon

I hinge line.

SIV is the nondimensional chordwise location at which the
wing trailing vortices are started.

THIK is the dimensional wing TE thickness.

THTED is the (positive) wing surface slope at the trailing edge
in degrees.

I!
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III. Output Data

Major Headings Are:

A. Input Data - Dimensional or nondimensional data as it was
given on the data cards.

B. Actual Values used in Program - Variables after non-
dimensionalization by b/2.

C. Pressure Distribution -

D. Sectional Properties as Follows:

YA (X LE) CA CCL CCMY XAC XCPA

(n) (xLg) (c) (cc) (c ( ac) (X ac)

y
E. Total load coefficients from "exact" theory

CN - Total normal force coefficient for wing only.

CLT - Total load coefficient.

CMTY - Total moment coefficient.

YBAR - Spanwise location for mean aerodynamic chord.

SIAC - Chordwise location for aerodynamic center.

CMC4 - Moment coefficient about the quarter chord.

CD-CDMIN - Induced drag.

SAREA - Reference area.

CBAR - Reference length.

F. [For deformed wings, the following is also output]

1. (a) Control point location; XO, YO, local chord; CA,

The x location of the last row of control points is re-
located at trailing edge of wing and new locations are
printed out.

(b) XO and YO are the nondimensional control point
locations on the wing.
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(c) Deform angle is the local deformation angle.

(d) B is the boundary condition (right-hand side

side of equation 57).

2. (a) x and y are the dimensional location of the control
points.

(b) B is the boundary condition (reference equation 59)

(c) WW is a dummy variable representing part of
boundary condition term.

(d) BOD DBLET UPWSH is the body doublet upwash.

3. (a) Polynomial coefficients are the coefficients which
describe AC loading distribution on the wing
(Reference Pequation 54).

4. (a) Pressure tdistribution for wing using doublet
paneling. The left-hand column, PSI, are the
nondimensional chord-wise locations; the top row
are the nondimensional spanwise locations at which
the pressure is computed.

5. (a) The next output is the sectional coefficients
for the deformed wings (reference section D, above).

(b) Next is the total coefficients for the deformed
wings (reference section E, above).

G. 1. XG and YG are the x and y locations of the starting
point of the trailing vortices on the wing.

2. GMA are the strengths of the trailing vortices.

H. Pressure distribution for elevon using exact functions
(reference section 4(a)).

I. This section contains the sectional properties for the elevon
(reference section D).

J. Total force coefficients for the elevon (reference section E).

K. Conversion to Neilsen's Data.
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